Faculty of Science and Technology

Savitribai Phule Pune University

Maharashtra, India

http://unipune.ac.in

Honours* in Data Science Board of Studies (Computer Engineering) (with effect from A.Y. 2020-21)

Savitribai Phule Pune University													
Honours* in Artificial Intelligence and Machine Learning With effect from 2020-21													
Year & Semester	Course Code and Course Title	٦ Ho	Teachi Schen urs / N	ng 1e Veek	Examination Scheme and Marks					Credit Scheme			
		Theory	Tutorial	Practical	Mid-Semester	End-Semester	Term work	Practical	Presentation	Total Marks	Theory / Tutorial	Practical	Total Credit
TE &	Computational Statistics	04			30	70				100	04		04
V	Computational Programming Laboratory			02			50			50		01	01
	Total	04	-	02	1	00	50	-	-	150	04	01	05
Total	Credits =05	1	1	r	1	1	1		T	1		1	
E R	Artificial Intelligence	04			30	70				100	04		04
VI	Total	04	-	-	1	00	-	-	-	100	04	-	04
	1	1	1	Tot	al Cr	edits =	04	1	1	1	1	1	1
BE g.	Machine Learning	04			30	70				100	04		04
VII	Machine Learning Laboratory			02			50			50		01	01
	Total	04	-	02	1	00	50	-	-	150	04	01	05
	Total Credits =05												
BE &	Soft Computing and Deep Learning	04	-		30	70				100	04		04
VIII	Seminar		02				-		50	50	02		02
	Total	04	-	02	1	00	-		50	150	06	-	06
	Total Credits =06												
Total Credit for Semester V+VI+VII+VIII = 20													
* <u>To be offered as Honours for Major Disciplines as–</u> 1. Computer Engineering 2.Electronics and Telecommunication Engineering 3.Electronics Engineering													
Reference: https://www.ajcte_india.org/sites/default/files/APH%202020_21.pdf / page 00_100													
keterence: <u>nttps://www.aicte-india.org/sites/default/files/APH%202020_21.pdf</u> / page 99-100													

Savitribai Phule Pune University Honours* inAl & ML Third Year of Engineering (Semester V)

Teaching Scheme	Credit Scheme	Examination Scheme	e and Marks			
Lecture: 04 Hours/Wee	k 04	Mid Semester(TH)	30 Marks			
i i i		End Semester(TH)	70 Marks			
Companion Course : Computational Statistics Laboratory						
Course Objectives:						
To introduce several statistica	al techniques found to	be serving as tools even toda	y in the			
development of machine learning and artificial intelligence based computer algorithms.						
 To imbibe strong foundation of statistics in students for implementation in computation. 						
 To understand modern computational methods used in statistics. 						
• To get detailed approach	To get detailed approach of simulation, estimation and visualization of statistical data					
• To understand the role of	To understand the role of computation as a tool of discovery in data analysis.					
• To be able to appropriate	To be able to appropriately apply computational methodologies to real world statistical					
problems.	problems.					
Io learn the data process	ing techniques require	a to get applied on machine i	earning algorithms.			
On completion of the course	learner will be able to	_				
 Identify the suitable meth 	nod of statistics on the	given data to solve the proble	em of any heuristic			
approach of prediction.	approach of prediction					
• Apply appropriate statisti	cal concepts and skills	to solve problems in both fan	niliar and			
unfamiliar situations inclu	Iding those in real-life o	contexts.				
• Design and analyze real v	vorld engineering prob	lems by applying various stat	istical modeling			
techniques.	techniques.					
• Formulate suitable statist	• Formulate suitable statistical method required as pre-processing technique for finding the					
solution of machine learning algorithm.						
 Model and solve computing 	 Model and solve computing problem using correlation, and resampling using appropriate 					
statistics algorithms.						
#Exemplar/Case Studies-Elaborated examples/Case Studies are included at the end of each unit to						
explore now the learned topics apply to real world situations and need to be explored so as to						
assist structure to increase their competencies, incurcating the specific Skills, building the						
exemplars or case studies are included for each unit: instructor may extend the same with more						
Exemplar/Case Studies may be assigned as self-study by students and to be excluded from theory						
examinations.						
Course Contents						
Unit I	Introduct	ion to Statistics	(07 Hours)			
What is statistics, Statistical Data- Categorical, Numerical (Continuous), Univariate and Bivariate						
Analysis, Mean, Median, Mode, Standard Deviation, Harmonic Mean, Data Visualization-Line,						
Scatter, Box plots, Histogram, Statistical Thinking.						
#Exemplar/Case Studies	Know about the great s	tatistician- Ronald Fisher				
Unit II	Dist	ributions	(9 Hours)			
Probability Distributions, Characterizing a Distribution, Discrete Distributions, Normal Distributions,						
Continuous Distributions Derived from the Normal Distribution, Poisson Distribution, Other						

Continuous distributions- Lognormal, Weighbull, Exponential, Uniform.							
#Exemplar/Case Studies	Know about the great statistician and father of India institute- Praful Chandra Mahanalobis	n statistical					
Unit III	Hypothesis Tests and Statistical Tests	(08 Hours)					
Typical Analysis procedures, Hypothesis Concept, Errors, p-Value, and Sample Size, Confusion Matrix, Sensitivity and Specificity, ROC-AUC Curve, Test on Numerical Data- Distribution of a Sample Mean, Comparison of Two Groups, Comparison of Multiple Groups							
Exemplar/Case Studies Do watch brief history of Statistics on YouTube							
	https://www.youtube.com/watch?v=J8W37byz_uw						
Unit IV	Statistical Methods	(08 Hours)					
Standard Deviation, Normalization- Feature Scaling, Min-Max scaling, Bias, Variance, Regularization, Ridge Regression, Lasso Regression, Cross Validation Techniques- K-fold, LOOCV, Stratified K-fold, Grid Search CV, CV Error							
#Exemplar/Case Studies	Euclid's Elements						
Unit V	Statistical Processing	(08 Hours)					
Dimensionality Reduction Techniques- Principal Component Analysis, Discriminant Analysis, Feature Selection- Chi2 square method, Variance Threshold, Recursive Feature Elimination, Outliers detection methods, Resampling-Random, under-sampling and over re-sampling							
#Exemplar/Case Studies	Anomalies						
Unit VI	Statistical Modeling	(08 Hours)					
Error, RMSE, Multilinear Regression, Polynomial Features, Gradient Descent, Logistic Regression, Bayesian Statistics, Bayes' Theorem, Monte Carlo Method #Exemplar/Case Studies Biography of Thomas Bayes							
Learning Resources							
 Text Books: Thomas Haslwanter, "An Introduction to Statistics with Python with Applications in the Life Sciences", Springer International Publishing Switzerland 2016, ISBN 978-3-319-28315-9, ISBN 978-3-319-28316-6 (eBook) 							
Alien B. Downey, Think Stats , Second Edition, O Kelliy Media, ISBN: 978-1-491-90733-7 Reference Books:							
 Thomas Haslwanter, "An Introduction to Statistics with Python with Applications in the Life Sciences", Springer International Publishing Switzerland 2016, ISBN 978-3-319-28315-9, ISBN 978-3-319-28316-6 (eBook) Poter Bruce and Andrew Bruce, "Bractical Statistics for Data Scientists", Eisst Edition, O'Deilling 							
Media, ISBN-978-1-491-95296-2							
Allen B. Downey, "Think Stats", Second Edition, O'Reilly Media, ISBN: 978-1-491-90733-7							
 Jose Unpingco, "Python for Probability, Statistics, and Machine Learning", Springer International Publishing Switzerland, ISBN 978-3-319-30715-2, DOI 10.1007/978-2-319- 							
30717-6, ISBN 978-3-319-30717-6 (eBook)							
Claus Weihs, Olaf Me	 Claus Weihs, Olaf Mersmann, Uwe Ligges, "Foundations of Statistical Algorithms", CRC Press. 						
ISBN-978-1-4398-7887-3 (eBook - PDF)							
e-Books:							
<u>http://file.allitebook</u>	http://file.allitebooks.com/20151204/Foundations%20of%20Statistical%20Algorithms.pdf						
<u>http://onlinestatboo</u>	http://onlinestatbook.com/Online_Statistics_Education.pdf						
<u>https://upload.wikin</u>	nttps://upioad.wikimedia.org/wikipedia/commons/8/82/Statistics.pdf http://cpx.org/content/col10522/1.28/pdf						
nttp://cnx.org/content/col10522/1.38/pdf							

<u>http://www.greenteapress.com/thinkstats/thinkstats.pdf</u>					
MOOC/ Video Lectures available at:					
<u>https://www.udemy.com</u>	https://www.udemy.com/course/introduction-to-bayesian-statistics/ (Free Course)				
<u>https://www.youtube.c</u>	https://www.youtube.com/watch?v=xxpc-HPKN28				
<u>https://www.udacity.co</u>	m/course/intro-to-sta	tisticsst101# (Free Course)			
<u>https://nptel.ac.in/cour</u>	https://nptel.ac.in/courses/111/105/111105090/				
https://nptel.ac.in/courses/111/105/111105077/					
Websites Resources:					
<u>https://analyticsvidhya.</u>	https://analyticsvidhya.com				
<u>https://towardsdatascie</u>	https://towardsdatascience.com				
<u>https://medium.com</u>	https://medium.com				
<u>https://stackabuse.com</u>	https://stackabuse.com				
https://machinelearningmastery.com					
Savitribai Phule Pune University					
Third Year of Engineering (Semester V)					
Computational Statistics Laboratory					
computational statistics Eaboratory					
Teaching Scheme	Credit Scheme	Examination Scheme and Marks			
Practical: 2 Hours/Week	01	Term work: 50 Marks			

Guidelines for Laboratory Conduction

- Lab Assignments: Following is list of suggested laboratory assignments for reference. Laboratory Instructors may design suitable set of assignments for respective course at their level. Beyond curriculum assignments and mini-project may be included as a part of laboratory work. The instructor may set multiple sets of assignments and distribute among batches of students. It isappreciated if the assignments are based on real world problems/applications. The Inclusion of few optional assignments that are intricate and/or beyond the scope of curriculum will surely be the value addition for the students and it will satisfy the intellectuals within the group of the learners and will add to the perspective of the learners. For each laboratory assignment, it is essential for students to draw/write/generate flowchart, algorithm, test cases, mathematical model, Test data set and comparative/complexity analysis (as applicable). Batch size for practical and tutorial may be as per guidelines of authority.
- <u>Term Work</u>-Term work is continuous assessment that evaluates a student's progress throughout the semester. Term work assessment criteria specify the standards that must be met and the evidence that will be gathered to demonstrate the achievement of course outcomes. Categorical assessment criteria for the term work should establish unambiguous standards of achievement for each course outcome. They should describe what the learner is expected to perform in the laboratories or on the fields to show that the course outcomes have been achieved. It is recommended to conduct internal monthly practical examination as part of continuous assessment.
- Assessment:Students' work will be evaluated typically based on the criteria like attentiveness, proficiency in execution of the task, regularity, punctuality, use of referencing, accuracy of language, use of supporting evidence in drawing conclusions, quality of critical thinking and similar performance measuring criteria.
- Laboratory Journal- Program codes with sample output of all performed assignments are to be submitted as softcopy. Use of DVD or similar media containing students programs maintained by Laboratory In-charge is highly encouraged. For reference one or two journals may be maintained with program prints in the Laboratory. As a conscious effort and little contribution towards Green IT and environment awareness, attaching printed papers as part

of v	vrite-ups and program listing to journal may be avoided. Submission of journal/ term work				
in the form of softcopy is desirable and appreciated.					
Suggested list of assignments					
(Use suitable programming language/Tool for implementation)					
Sr. No	Assignment statement				
1	Compute Estimators of the main statistical measures like Mean, Variance, Standard				
	Deviation, Covariance, Correlation and Standard error with respect to any example.				
	Display graphically the distribution of samples.				
2	Plot the Normal Distribution for class test result of a particular subject. Identify the Skewness and Kurtosis				
3	Load the dataset: birthwt Risk Factors Associated with Low Infant Birth Weight at https://raw.github.com/neurospin/pystatsml/master/datasets/birthwt.csy				
	1. Test the association of mother's (bwt) age and birth weight using the correlation test				
	2 Test the association of mother's weight (lwt) and hirth weight using the correlation				
	testand linear regeression.				
	3. Produce two scatter plot of: (i) age by birth weight; (ii) mother's weight by birth weight.				
	Elaborate the Conclusion ?				
4	Apply Basic PCA on the iris dataset. The data set is available at:				
	https://raw.github.com/neurospin/pystatsml/master/datasets/iris.csv				
	 Describe the data set. Should the dataset been standardized? 				
	 Describe the structure of correlations among variables. 				
	 Compute a PCA with the maximum number of components 				
	.• Compute the cumulative explained variance ratio. Determine the number of				
	components <i>K</i> by your computed values.				
	• Print the <i>K</i> principal components directions and correlations of the <i>K</i> principal compo-				
	nents with the original variables. Interpret the contribution of the original variables into				
	the PC.				
	 Plot the samples projected into the K first PCs. 				
	Color samples by their species.				
5	Perform clustering of the iris dataset based on all variables using Gaussian mixture				
	models. Use PCA to visualize clusters.				